
Formal Verification of LabVIEW Programs Using the ACL2
Theorem Prover

Matt Kaufmann
Dept. of Computer Sciences,
University of Texas at Austin

kaufmann@cs.utexas.edu

Jacob Kornerup
National Instruments, Inc.,

jacob.kornerup@ni.com

Mark Reitblatt
Dept. of Computer Sciences,
University of Texas at Austin

National Instruments, Inc.
mark@reitblatt.com

ABSTRACT
The LabVIEW system is based on a graphical dataflow lan-
guage, and is widely used for data acquisition, instrument
control and industrial automation. This paper presents a
methodology for annotating LabVIEW programs with their
specifications, translating those annotated programs into ACL2,
and proving the translated specifications with ACL2. Our
system supports verification of inductive invariants of bounded
loops as well as assertions about straight-line code. Our
verification methodology supports the user by generating
a highly structured set of proof obligations, many or all
of which are discharged automatically. This methodology
makes extensive use of hints to support scalability, includ-
ing careful theory control as well as functional instantiation
that avoids explicit use of induction. We describe the de-
sign, applicability and limitations of the framework. We also
present several examples demonstrating our approach.

1. INTRODUCTION
LabVIEW is a widely used product of National Instruments,
Inc. that supports data collection, instrument control and
industrial automation. Its dataflow language is similar in se-
mantics to a functional language, with write-once dataflow
wires taking the place of local variables and a very simple
control flow. The full LabVIEW language contains several
decidedly non-functional features such as synchronization
primitives and global variables. We have chosen to work
with a restricted yet well featured subset of LabVIEW’s lan-
guage that contains only purely functional elements.

LabVIEW programs are graphical diagrams called VIs (Vir-
tual Instruments). Wires carry data from left to right be-
tween nodes, which are inputs, outputs, or instances of func-
tional units. When diagram input nodes (actual parameters)
obtain their values, their outputs are carried down wires to
other nodes, which in turn fire once all of their inputs have
been set. Figure 1 illustrates how this works. Since there
are no inputs to the diagram and the constant nodes have
no inputs, they are free to fire by pushing their value, 1, to

Figure 1: Simple LabVIEW diagram

Figure 2: LabVIEW diagram with a for-loop

their output wires. The ‘+’ node then obtains its two inputs,
1 and 1, and adds them to produce the value 2 on its out-
put wire, which in turn “feeds” the output of the diagram,
labeled “Output”.

Functional units can be one of LabVIEW’s built-in primi-
tives or other LabVIEW diagrams called sub-VIs, instances
of which are embedded in the parent diagram. Control struc-
tures such as for-loops, as shown in Figure 2, are also func-
tional units,. All functional units, including control flow
structures, operate by waiting for all of their inputs to be
set before they begin executing. Local state between iter-
ations is stored in shift registers, the boxes with arrows in

(defun−n constant [0]−0 (in)
(S∗ : T 0 0))

(defun−w constant [0]−0< T 0> (in)
(G : T 0 (constant [0]−0 in)))

(defun−n increment−0 (in)
(S∗ : T 1 (1+ (constant [0]−0< T 0> in))))

Figure 3: Simple LabVIEW diagram translation

Figure 2. In our particular example, the loop bound is 10, so
there are 10 iterations of the loop, each adding the current
value of the loop counter i to the accumulated sum that is
stored in the shift register (initially, 0). The output is thus
the sum 0 + 1 + . . . + 9.

The rest of this paper begins with a discussion of our transla-
tion methodology for programs and specifications. We then
explain our verification infrastructure, including automatic
generation of lemmas, by way of a running example. Finally,
we discuss future work and conclude.

2. TRANSLATION
We begin by describing our translation of LabVIEW pro-
grams to ACL2 functions. Then we explain our methodology
for extending programs with specifications.

2.1 LabVIEW Model
The translation is kept as simple as possible by closely mim-
icking the original data-flow structure. The input LabVIEW
diagram’s nodes and wires are represented by ACL2 func-
tions. A node takes a record structure [4] representing the
input to the whole diagram and return a record, with keys
representing its output terminals (names) bound to the out-
put values. Wires take a diagram input record and return
the value extracted from their driving node.

In Figure 3 the second ACL2 function represents the wire
holding the value of the _T_0 output terminal of the first
constant node representing the constant 0. Since there are
no inputs to this diagram, the in record is actually ignored.
Contrast that with Figure 4, which contains one diagram
input. Note that (G k r) gets the value of key k in record
r, while (S* k0 v0 . . . kn vn) creates the record that sets
the value of key ki to value vi for i from 0 to n.

For-loops and other iterative structures present an interest-
ing challenge. In LabVIEW each control structure is split
into two nodes, an “inner” Self Reference Node (SRN) and
an outer node, roughly corresponding to a function defini-
tion and a corresponding function call, respectively. The
outer node handles the initialization of structure inputs and
the binding of structure outputs. In Figure 2 the outer node
reads the initial values for the shift register and the loop

(defun−w input< T 0> (in)
(G : input in))

(defun−n increment−0 (in)
(S∗ : T 1 (1+ (input< T 0> in))))

Figure 4: LabVIEW diagram with input

bound, N, and initializes the loop counter, i. It then checks
to see if the loop counter is less than the loop bound and,
if so, runs the SRN with the single wire bound to the value
in the shift register. At the next iteration it increments the
loop counter by 1 and checks the bound, and, if the bound
check passes, it reads the last iteration’s value out of the
shift register and runs the SRN once again, but with the
wire holding the new shift register value. Once the bound
check fails the outer node binds the output wire to the latest
shift register value and stops running.

We have chosen to model these structures using four sep-
arate ACL2 functions. In Figure 5 we show a translation
of the diagram in Figure 2; for-loop-srn is the SRN node
of for-loop. for-loop calls for-loop-srn$loop with argu-
ments with the loop bound and an initial environment (set
up by for-loop-srn$loop$init). for-loop-srn$loop is a
tail recursive function that models the actual iteration struc-
ture by checking the loop bound at every iteration. for-

loop-srn$step grabs the outputs of the loop’s iteration and
binds the next iteration’s inputs.

One interesting requirement for a translation system like
this one is a human invertible mapping between the orig-
inal (LabVIEW) program and the generated ACL2 func-
tions. When working with proofs of non-trivial diagrams
it is essential to be able to relate the verification items to
the actual diagram in order to gain insight into the process.
Unfortunately LabVIEW doesn’t provide a mechanism for
naming wires and some nodes, so the translator must choose
an insightful yet unique name for each node. In our current
(and most successful) naming scheme we name each node
according to its type (such as increment or multiply) and
the number of such nodes previously seen. Unfortunately
it’s impossible to know what order the nodes will have when
they come out of the first compiler, so it still requires a lit-
tle work to exactly pin the ACL2 functions to the LabVIEW
diagram. Wires are named according to the (unique) node
and terminal which provides its value; since multiple nodes
may read from the same wire, it’s impossible to name wires
according to target as well as source.

It is also worth noting that LabVIEW uses standard fixed-
size data types such as 16 or 32 bit integers, but we imple-
ment arithmetic in our model using ACL2’s arithmetic func-
tions with idealized integers. This allows us to use ACL2’s

(DEFUN FOR-LOOP-SRN$STEP (IN)
(S :|_T_4| (G :|_T_1| (|_N_5| IN)) IN))

(DEFUN FOR-LOOP-SRN$LOOP (N IN)
(DECLARE (XARGS :MEASURE (NFIX (- N (G :LC IN)))))
(COND ((OR (>= (G :LC IN) N)

(NOT (NATP N))
(NOT (NATP (G :LC IN))))

IN)
(T (FOR-LOOP-SRN$LOOP N

(S :LC (1+ (G :LC IN))
(FOR-LOOP-SRN$STEP IN))))))

(DEFUN FOR-LOOP-SRN$LOOP$INIT (IN)
(S* :LC 0

:|_T_2| (CONSTANT[10]-1<_T_0> IN)
:|_T_4| (CONSTANT[0]-0<_T_0> IN)))

(DEFUN-N FOR-LOOP (IN)
(FOR-LOOP-SRN$LOOP (CONSTANT[10]-1<_T_0> IN)

(FOR-LOOP-SRN$LOOP$INIT IN)))

Figure 5: ACL2 translation of figure 2

powerful arithmetic libraries, but puts a limitation on our
claim to be verifying actual LabVIEW semantics. That is,
our diagrams are verified against an idealized semantics, and
one needs an implicit assumption about the absence of over-
flow in order for the idealized semantics to agree with the
actual semantics.

2.2 Specifications
It is important to give the programmer an easy mechanism
for specifying functional properties that is not too difficult
to translate into the underlying formalism. Because we al-
ready translate LabVIEW directly into ACL2, we chose to
use designated boolean valued blocks of LabVIEW code as
specifications. This choice presents several benefits:

• Specifications are straightforward for LabVIEW pro-
grammers to write

• Specifications are given the same semantics as the Lab-
VIEW program itself

• Specifications can be checked dynamically during Lab-
VIEW runs

However, sometimes it is not straightforward to write the
intended specification in LabVIEW, for example when Lab-
VIEW’s lack of recursion would require one to use a loop in
the specification. For these instances we have implemented a
“stub node”that allows programmers to refer to an arbitrary
ACL2 function in their specifications.

Assertions for simple straight-line diagrams can be specified
by a single assertion box placed on a diagram. Loop speci-
fications take the form of two assertion blocks; one is a loop
invariant and the other is the actual desired loop specifica-
tion. We defer further discussion of the graphical represen-
tation of specifications to the following section, where we
show how this works for a loop.

Figure 6: LabVIEW diagram “gauss”

3. VERIFICATION PROCEDURE
We explain our verification procedure by way of an example.
First, we explain the example. Then we describe the files
generated by the translator. Next we outline the lemmas
we generate and how they fit together. We conclude with a
brief discussion of library development.

3.1 A Running Example
Our example diagram is named “gauss”. This diagram takes
a natural number input, N , and returns the result of adding
all the natural numbers from N down to 1. See Figure 6.
While this program is similar to the one in Figure 2, it counts
down instead of up because that presents more of a chal-
lenge: unlike that previous diagram, here the loop invariant
will not simply be the result of instantiating the top-level
property, with the loop bound replaced by the loop counter.

Our top-level specification is that this sum equals N(N +
1)/2. The diagram can be extended for this specification as
shown in Figure 7, to contain two top-level blocks: the for-
loop block and a block for the top-level specification. The
output of the for-loop block (representing the above sum) is
an input to the invariant block, whose output is the Boolean
generated by an equality node with two inputs, essentially:
that sum output, and a node whose output equals N(N +
1)/2.

As with traditional program verification, the user supplies a
loop invariant, i.e., a property that is true at loop entry, is
preserved by each iteration through the loop, and is sufficient
to prove the top-level specification. Figure 7 shows a block
for the loop invariant, inside the for-loop block.

Here is a textual representation of that inner block, where:
c denotes the value being counted down, which is initially
N and is decremented by 1 at each iteration, visually rep-
resented as the upper shift register in the diagram; and i
denotes the loop counter, which (as for every for-loop) is
initially 0 and is incremented by 1 at each iteration.

Figure 7: LabVIEW diagram “gauss”, annotated

sum = N(N + 1)/2− c(c + 1)/2

&

c = N − i

Before leaving this introduction to our example, we say a
word about why this loop invariant implies the top-level as-
sertion that sum = N(N + 1)/2. A critical observation is
that as the loop exits, i has reached N . Thus c = 0 at
exit, and the equation for sum above reduces to the desired
equation. We expect this observation, namely that the final
value of the loop counter is equal to the loop bound, to be
useful quite generally. We return to this point at the end of
Section 3.3.

3.2 Generated Book Structure
We generate three files for an annotated diagram that are
intended to become certified books. For our example, these
files are included in the supporting materials for this paper.1.

The functions book (gauss-fns.lisp) contains the actual
translation of the LabVIEW diagram into ACL2, as de-
scribed above.

The top book (gauss.lisp), shown below, includes the func-
tions book (by include-book) and states the main result,
that the output of the top-level specification block is T. Here,
:ASN is the (unique) key of the record (ACL2-TOP-INV IN)

returned by the top-level invariant block on an arbitrary in-
put, IN, and GAUSS$INPUT-HYPS states input type hypotheses
derived from the diagram, in this case, (NATP (G :INPUT1

IN)).

(IN-PACKAGE "ACL2")
1In the discussion below, globally substitute for “gauss” to
get filenames for diagrams with other names.

(INCLUDE-BOOK "gauss-fns")

(LOCAL (INCLUDE-BOOK "gauss-work"))

(SET-ENFORCE-REDUNDANCY T)

(DEFTHM ACL2-TOP-INV$INV

(IMPLIES (GAUSS$INPUT-HYPS IN)

(G :ASN (ACL2-TOP-INV IN))))

The local include-book form indicates the third book, the
work book: gauss-work.lisp. Because this book is included
only locally in the top book, certification of the top book
guarantees that the final theorem is a logical consequence
of the definitions in the functions book alone [3]. Thus,
the user has total freedom to edit the work book without
compromising the validity of the verification effort, provided
that ultimately the top book certifies. Any mistakes the
user left in the work file such as the use of skip-proofs,
defaxiom, or trust tags will of course prevent the work book,
and hence the top book, from certifying. The generation of
the set-enforce-redundancy event above is merely for user
convenience, to highlight any editing mistake the user may
have made in the final theorem of the work book.

Of course, our goal is to automate the creation of the work
book so as to minimize the amount of user effort. We turn
now to describing the layout of the work book, which facil-
itates automatic proof of the “easy” parts, while presenting
appropriate problem-specific proof obligations that may re-
quire user effort to prove. In this particular example no user
effort is required: gauss-work.lisp certifies automatically.

3.3 Generated Proof Events
In this section we describe our approach to verifying proper-
ties of for-loops. (The verification of loop-free code is consid-

erably simpler.) To help the user we generate a highly struc-
tured proof scaffolding, as an orchestrated series of lemmas
leading to the proof of the user-supplied inductive invariant
and then, from that, the top-level specification. In particu-
lar we avoid explicit proof by induction, by using functional
instantiation [1] based on a generic theory where the induc-
tion is done using an encapsulated inductive invariant.

The proof strategy may be thought of in two parts. First,
show that the loop invariant is preserved by a single step
and hence by the loop, so since it is true initially, therefore
the loop invariant holds. Then show that the top-level spec-
ification holds by providing that loop invariant theorem as
a :use hint.

We now give some details on how the above strategy is re-
alized in a work book by focusing on file gauss-work.lisp.
Note that the structure is the same for any for-loop. Al-
though these general sorts of methods are well-known, the
trick here is to generate suitable lemmas for dealing with
details such as type information and the final value of the
loop counter, while providing automated proof for all but the
key problem-specific pieces. Many such lemmas are omitted
here, but again, they may be found in file gauss-work.lisp

included with the supporting materials to this paper.

1. Extend the loop invariant.

Our loop invariant extends the loop invariant provided by
the user, which is represented by the third conjunct below.
The first conjunct represents type information derived from
the LabVIEW diagram (here, the input is a natural num-
ber). The second conjunct equates variable N with the loop
bound (input name _T_3 in this case).

(DEFUN |_N_33$PROP| (N IN)

(DECLARE (IGNORABLE N))

(AND (|_N_33$HYPS| IN)

(EQUAL N (G :|_T_3| IN))

(G :ASN (ACL2-LOOP-INV IN))))

2. The loop invariant is preserved by taking a step.

This lemma may require user interaction (as noted in a com-
ment) such as proving lemmas, including books, and provid-
ing hints. But for simple examples the proof can be fully
automatic, as it is in the present example. Note the use of
function (S k v r), which creates the modification of record
r that binds key k to value v, here reflecting the increment-
ing by 1 of the loop counter when taking one step of the
loop.

; USER ASSISTANCE MAY BE REQUIRED:

(DEFTHMDL |_N_33$PROP{_N_8$STEP}|

(IMPLIES (AND (NATP (G :LC IN))

(< (G :LC IN) N)

(|_N_33$PROP| N IN))

(|_N_33$PROP| N

(S :LC (1+ (G :LC IN))

(|_N_8$STEP| IN)))))

3. The loop invariant is preserved by running the full
SRN (uninstantiated) loop.

Encapsulated functions step-generic and prop-generic are
introduced in book generic-loop-inv.lisp to satisfy the
following constraint:

(defthm prop-generic-step

(implies (and (natp n)

(natp (g :lc in))

(< (g :lc in) n)

(prop-generic n in))

(prop-generic n (s :lc (1+ (g :lc in))

(step-generic in)))))

Also in the above book, one finds a straightforward defini-
tion of a generic loop function and a simple inductive con-
sequence of that constraint:

(defun loop-generic (n in)

(declare (xargs :measure (nfix (- n (g :lc in)))))

(cond ((or (not (natp n))

(not (natp (g :lc in)))

(>= (g :lc in) n))

in)

(t (loop-generic n

(s :lc (1+ (g :lc in))

(step-generic in))))))

(defthm loop-generic-thm

(implies (and (natp n)

(natp (g :lc in))

(prop-generic n in))

(prop-generic n (loop-generic n in)))

:hints (("Goal" :induct t)))

An important lemma for a specific diagram can then be
proved automatically by functional instantiation, with an
:in-theory hint that provides a small, controlled theory to
promote scalability. In our example that lemma is as follows.

(DEFTHML |_N_33$PROP{_N_8}|

(IMPLIES (AND (NATP N)

(NATP (G :LC IN))

(|_N_33$PROP| N IN))

(|_N_33$PROP| N (|_N_8$LOOP| N IN)))

:HINTS

(("Goal" :BY (:FUNCTIONAL-INSTANCE

LOOP-GENERIC-THM

(STEP-GENERIC |_N_8$STEP|)

(PROP-GENERIC |_N_33$PROP|)

(LOOP-GENERIC |_N_8$LOOP|))

:IN-THEORY

(UNION-THEORIES ’(|_N_33$PROP{_N_8$STEP}|)

(THEORY ’MINIMAL-THEORY))

:EXPAND ((|_N_8$LOOP| N IN))))

:RULE-CLASSES NIL)

4. The loop invariant holds of the outer (instantiated)
loop, assuming loop input types hold.

The following theorem says the loop invariant is true when
entering the outer loop, that is, is true initially as the loop
sits in the environment provided by the top-level diagram
(i.e., with loop inputs provided by that diagram):

(DEFTHML ACL2-LOOP-INV$INV{INIT}

(IMPLIES (ACL2-LOOP-INV$INV{PRE} IN)

(|_N_33$PROP| (INPUT1<_T_0> IN)

(|_N_33$PROP$INIT| IN)))

:RULE-CLASSES NIL)

The following predicate asserts that the loop invariant holds
for the outer loop.

(DEFUN ACL2-LOOP-INV$INV+ (IN)

(DECLARE (XARGS :NORMALIZE NIL))

(|_N_33$PROP| (INPUT1<_T_0> IN)

(|_N_8$LOOP| (INPUT1<_T_0> IN)

(|_N_8$LOOP$INIT| IN))))

The lemmas ACL2-LOOP-INV$INV{INIT} (just above) and
|_N_33$PROP{_N_8}| (above, SRN loop invariant preserva-
tion) are key for proving that the outer loop holds, as stated
with above predicate ACL2-LOOP-INV$INV+, under the as-
sumption that the loop inputs satisfy their expected type
hypotheses.

(DEFTHML ACL2-LOOP-INVINVCONDITIONAL

(IMPLIES (ACL2-LOOP-INV$INV{PRE} IN)

(ACL2-LOOP-INV$INV+ IN))

:HINTS ...)

5. The loop invariant holds of the outer (instantiated)
loop, without assumptions on types.

Here we show that the necessary type hypotheses do indeed
hold. Again, user assistance may be required, though one
expects that to be rare in simple cases, like this example.

(DEFTHML ACL2-LOOP-INV$INV{PRE}{HOLDS}

(IMPLIES (GAUSS$INPUT-HYPS IN)

(AND (NATP (INPUT1<_T_0> IN))))

:RULE-CLASSES NIL)

And now we can prove that the loop invariant holds assum-
ing only the input type hypotheses for the top-level diagram.

(DEFTHML ACL2-LOOP-INV$INV

(IMPLIES (GAUSS$INPUT-HYPS IN)

(ACL2-LOOP-INV$INV+ IN))

:HINTS

(("Goal"

:IN-THEORY

(UNION-THEORIES ’(ACL2-LOOP-INV$INV{PRE})

(THEORY ’MINIMAL-THEORY))

:USE (ACL2-LOOP-INVINVCONDITIONAL

ACL2-LOOP-INV$INV{PRE}{HOLDS})))

:RULE-CLASSES NIL)

6. The top-level invariant holds.

It remains only to prove the top-level assertion. A couple of
automatically generated lemmas are proved automatically
(in a scalable way, with small theories), and the top-level
assertion then follows, though user assistance may be re-
quired.

(DEFTHM ACL2-TOP-INV$INV

(IMPLIES (GAUSS$INPUT-HYPS IN)

(G :ASN (ACL2-TOP-INV IN)))

:HINTS (("Goal" :IN-THEORY (DISABLE |_N_8$LOOP|)

:USE (ACL2-LOOP-INV$INV

LEMMA-2-ACL2-LOOP))))

The proof goes through automatically in the gauss example.
But the proof requires the following lemma in the work book
that is both generated and proved automatically. Recall
from the end of Section 3.1 that for this example, it is critical
to know that the final value of the loop counter is equal to
the loop bound. That theorem is included in our generic
theory, so we get a fast, reliable proof for our example using
functional instantiation.

(DEFTHML LC$_N_8

(IMPLIES (AND (NATP N)

(NATP (G :LC IN))

(<= (G :LC IN) N))

(EQUAL (G :LC (|_N_8$LOOP| N IN)) N))

:HINTS (("Goal" :BY (:FUNCTIONAL-INSTANCE

LOOP-GENERIC-LC

(STEP-GENERIC |_N_8$STEP|)

(PROP-GENERIC |_N_33$PROP|)

(LOOP-GENERIC |_N_8$LOOP|))

:IN-THEORY (THEORY ’MINIMAL-THEORY)

:EXPAND ((|_N_8$LOOP| N IN)))))

3.4 Library
An important part of a verification framework for a lan-
guage is an expansive set of theorems about that language’s
primitives. Since for the most part we translate LabVIEW
primitives into new functions that we have defined, it is nec-
essary to prove many basic theorems before any progress can
be made. For example, we have to prove that LabVIEW’s
array-reverse is its own inverse.

It is possible that in the future our definitions of primitives
may change, due either to a discovered disagreement with
LabVIEW’s actual semantics or perhaps the desire to in-
crease simulation performance. To this end we keep the
LabVIEW primitives’ definitions disabled when proving the-
orems in the work file, and instead rely solely upon higher
level properties proven in a library of theorems about Lab-
VIEW primitives. The idea here is that when we are veri-
fying diagrams, we have to lean on these properties which

Figure 8: Insertion sort VI using insert sub-VI and
ACL2 predicates

are true of the actual LabVIEW primitives instead of the
specific ACL2 implementation of the primitives which may
have additional properties. Of course, many of our library
theorems have been discovered as we worked examples and
examined failed proof output.

4. FUTURE WORK
4.1 Compositional Verification
It is generally agreed that for a verification methodology to
be practical it must be able to employ some form of com-
positional reasoning. LabVIEW’s granularity of abstraction
is a sub-VI, so it is only natural to base a compositional
approach around sub-VIs. Towards this end we have a pre-
liminary methodology completed by hand. The basic idea
is for a sub-VI to ”export” a constrained function that cor-
responds to the sub-VI, along with an optional library file
containing a theory built around that constrained function.
When another VI in turn uses an instance of that sub-VI, we
only use the exported properties of the sub-VI. By separat-
ing the desired properties of the sub-VI from the actual im-
plementation we allow component-wise verification for even
partially completed systems.

For an example of this approach, consider Figure 8. Here we
have an implementation of a simple insertion sort. The real
work happens in the insert sub-VI, but the high level verifi-
cation of insertion sort can happen even before writing the
insert sub-VI. This diagram is verified automatically under
the constraints that “insert” returns a sorted list if its first
argument is a sorted list and that it returns a permutation
of the extension of its input list by consing, to the front, the
item to be inserted. Separately we have an actual “insert”
sub-VI that has these properties.

4.2 Other Additional Capabilities
We have accumulated a list of improvements that we would
like to make to our methodology and tools.

As we discussed in Section 2.1, we currently support a se-
mantics of unbounded integers for LabVIEW’s bounded data
types. We would like to rectify that situation, both by suit-

able translator modification, and with incorporation and/or
development of suitable libraries.

Although there are many interesting LabVIEW programs
that are purely functional, we would like to handle state, in-
cluding limited I/O and global variables. We have done some
very simple proofs but haven’t yet automated the transla-
tion or done anything of size. Not surprisingly, handling
state seems to pose quite a challenge!

There is more we can do to support the work style of Lab-
VIEW users, who tend to work in its graphical interface. For
example, proved assertions might be removed or recolored.

We handle for-loops with a fixed iteration bound. We in-
tend to support LabVIEW while-loops as well, perhaps using
defpun [5] to model unbounded recursion.

Since LabVIEW runs on FPGAs, which suggests the po-
tential for formal verification of timing properties for the
generated hardware designs.

As we work more complex examples we expect to find addi-
tional ways to improve proof support. For example, we may
employ ACL2’s clause-processor hook [2] to connect proof
tools based on efficient decision procedures.

5. CONCLUSION
We have described a system for translating annotated Lab-
VIEW diagrams into files containing ACL2 functions and
theorems. We have employed this system to work about
a dozen examples. We have extended our library of ACL2
functions for LabVIEW primitives as needed by the proofs,
and proved useful facts about these LabVIEW programs.
All their proofs are now done automatically by ACL2.

The general methods used in this paper are well-known. Our
technical contribution is to generate appropriate lemmas au-
tomatically that deal with details such as type information
and the final value of the loop counter, and to generate suit-
able hints to provide automation that scales to large prob-
lems, while providing fast automatic proof for all but the key
problem-specific pieces. Our contribution is also to connect
formal verification to a widely-used programming language
with some 150,000 users world-wide.

We continue to extend the methodology as we gain more ex-
perience. For example, in earlier versions of the framework,
loop invariants were placed outside the loop. This presented
many complications involving the appropriate relation of the
inputs to the invariant block to the actual loop inputs. Mov-
ing the invariant inside the loop reduced the complexity of
the translation and simplified the task of writing invariants
in LabVIEW.

This project is in a relatively early stage. We have outlined
some of the many areas in which to extend our efforts. In
particular, our investigation of hierarchy is important for
supporting scalability to large collections of components.
This includes the study of proof reuse and linking together
proofs of subcomponents in the proof of properties of a com-
ponent.

Acknowledgements
We thank Jeff Kodosky, the originator of LabVIEW, for
his guidance and inspiration, and also Warren Hunt and
J Moore for their efforts in getting this project going as
well as J Moore’s guidance in advising Mark. We are es-
pecially grateful to Grant Passmore for his significant con-
tributions in the early phases, while an intern at National
Instruments, where he worked out a first approach to using
ACL2 to verify LabVIEW programs. Preparation of this
paper was supported in part by DARPA and the National
Science Foundation under Grant No. CNS-0429591.

6. REFERENCES
[1] R. Boyer, D. Goldschlag, M. Kaufmann, and J. S.

Moore. Functional instantiation in first-order logic. In
V. Lifschitz, editor, Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor
of John McCarthy, pages 7–26. Academic Press, 1991.

[2] M. Kaufmann, J. Moore, S. Ray, and E. Reeber.
Integrating external deduction tools with ACL2. In
C. Benzmueller, B. Fischer, and G. Sutcliffe, editors,
Proceedings of the 6th International Workshop on
Implementation of Logics (IWIL 2006), volume 212 of
CEUR Workshop Proceedings, pages 7–26, 2006. to
appear in the Journal of Applied Logic.

[3] M. Kaufmann and J. S. Moore. Structured Theory
Development for a Mechanized Logic. Journal of
Automated Reasoning, 26(2):161–203, 2001.

[4] M. Kaufmann and R. Sumners. Efficient rewriting of
data structures in acl2. In Proceedings of the Third
International Workshop on the ACL2 Theorem Prover
and its applications, Grenoble, France, April 2002.

[5] P. Manolios and J. S. Moore. Partial functions in ACL2.
Journal of Automated Reasoning, 31(2):107–127, 2003.

